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A lattice gas model for Schl6gl's second chemical reaction is described and 
analyzed. Because the lattice gas does not obey a semi-detailed-balance con- 
dition, the equilibria are non-Gibbsian. In spite of this, a self-consistent set 
of equations for the exact homogeneous equilibria are described, using a 
generalized cluster-expansion scheme. These equations are solved in the two- 
particle BBGKY approximation, and the results are compared to numerical 
experiment. It is found that this approximation describes the equilibria far more 
accurately than the Boltzmann approximation. It is also found, however, that it 
can give rise to spurious solutions to the equilibrium equations. 
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1. I N T R O D U C T I O N  

Lattice gas au tomata  have been widely used as models of nonequi l ibr ium 
statistical systems since it was shown in 1986 that they could be used to 
model Navier-Stokes fluids. (~) Lattice gases consist of particles moving 
about  and colliding on a lattice in such a way that their macroscopic 
behavior satisfies hydrodynamic partial differential equations. Like the 
Ising model, they are simple discrete systems which are well suited both  to 
computer  implementat ion and to elegant analytic techniques; unlike the 
Ising model, however, they can be used to study phenomena  far from 
equilibrium. 
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All of the usual tools of kinetic theory can be used for the analysis of 
lattice gases. Lattice gases whose collisions obey a condition known as 
semi-detailed balance (SDB) can be shown ~2) to have a Gibbsian (product) 
equilibrium distribution. As the lattice spacing goes to zero, expansion 
about this equilibrium yields the hydrodynamic equations satisfied by 
the system; this is a discrete version of the usual Chapman-Enskog 
procedure, t 3) 

To date, most analyses of lattice gases have been done using the 
Boltzmann molecular chaos approximation. The kinetic ring approxima- 
tion has been used to improve this analysis for SDB lattice gases? 4, 5~ We 
have recently used cluster expansion methods to develop an exact descrip- 
tion of SDB lattice gasesJ 6) In such lattice gases, the exact equations of 
motion include the effects of correlations which renormalize the lattice-gas 
transport coefficients. In this paper, we extend these methods to describe 
a particular non-semi-detailed-balance (NSDB) lattice gas. Related work 
on exact equations for NSDB lattice gases has recently been done by 
Bussemaker el al. tv~ 

It has been known for decades that chemically reacting systems far 
from equilibrium can exhibit fascinating phenomenology, including pattern 
formation tS) and symmetry breaking. C9) Such complicated phenomenology 
can arise from very simple chemical reactions, and idealized model reac- 
tions have been developed to illustrate these phenomena. For example, the 
simple model reaction proposed by Schl6gl in 1972, tl~ 

2 X +  A -~ 3 X  

where X is the reactant species and A is a background species of fixed 
density, can possess two stable equilibrium concentrations of the species X. 
In that case, the system can excibit spontaneous pattern formation as it 
breaks into domains of each concentration. Because kinetic fluctuations are 
important in the dynamics of such systems, it is natural that lattice gas 
automata be applied to their study, and this has been done with great 
success over the past 5 years. 11~-141 

Reaction-diffusion lattice-gas models typically allow reactant particles 
to diffuse for some number of timesteps k between reactions. The diffusion 
steps obey SDB, while the reaction steps usually do not. It is remarkable 
that while natural chemically reacting systems seem to be able to generate 
spontaneously patterns with microscopically reversible laws of motion, all 
lattice-gas models of such systems to date have found it necessary to violate 
SDB. There is no doubt that it is easier to generate nontrivial structure in 
NSDB lattice gases. Violations of SDB can lead to the spontaneous genera- 
tion of patterns and correlations, and hence non-Gibbsian equilibria. "5) In 
such situations, however, the Boltzmann molecular chaos assumption is 
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particularly suspect, and the theoretical analysis of the system becomes 
difficult or impossible. Only in the limit of large k has analytic progress 
been made; at low k the Boltzmann theory is known to be seriously in 
error.(14) 

In this paper, we describe a simple lattice-gas model for Schl6gl's 
second chemical reaction. Because the reaction steps of this lattice gas do 
not obey SDB, the equilibria are non-Gibbsian. We derive a self-consistent 
set of equations for the exact homogeneous equilibria using cluster- 
expansion methods. We solve these equations in the two-particle BBGKY 
approximation; in this approximation these equations are similar to those 
arising from the method recently developed by Bussemaker et aL (7) 

Comparing our results to numerical experiment, we find that this approx- 
imation describes the equilibria far more accurately than the Boltzmann 
approximation. We also find that spurious solutions to the equilibrium 
equations appear; these solutions are unstable, however, and can be 
removed by including effects due to three-particle correlations. 

2. DESCRIPTION OF THE SCHLOGL MODEL LATTICE GAS 

2.1. Schl6gl's Second Chemical Reaction 

Our starting point is the following generalization of Schl6gl's second 
chemical reaction t~~ 

k~ 
2X+ A ~ 3X 

k? 
X +  B , - ~ - 2 X  

kg 
C.-~- X 

where X is the reactant species, A, B, and C are background species of 
fixed density, and the k f  are the forward ( + ) and reverse ( - ) rates for the 
reaction with j reactant molecules on the left. Denoting the density of 
species Y by N r ,  we obtain the stoichiometric equation for this reaction 

d N x = k + N A N - x - - k ~ _ N 3  + k + N B N x  , - " + - " k t N ~ v + k  o N c - k  o N x  
dt 

"9 3 
= ~Co -- K 1 N x +  t c 2 N - x -  K3Nx 

where we have defined the stochiometric coefficients 

Ko = k ~ - N c  

Kl = k  o - k + N B  
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x 2 = k + N A  - k  7 

K 3 =k;_ 

Finally, to model the stochastic motion of the reactant X between reac- 
tions, we add a diffusive term to obtain the reaction-diffusion equation, 

~Nx  
Ot = DV ' -Nx+ Xo - xl N x +  x 2 N  x -  x 3 N  3. ( 1 ) 

Note that Eq. (I)  allows for up to three spatially uniform equilibria, 
corresponding to the roots of the cubic. When there are three roots and 
K 3 > 0, the low-density and high-density roots, denoted by N x and N~., 
respectively, are easily seen to be stable to small fluctuations, while the 
middle root, N ~ is unstable. The evolution of Eq. ( I ) from generic initial 
conditions thus yields domains of constant density N x and N~c, separated 
by sharp gradients whose widths are governed by the diffusive term in 
Eq. (I). (See Fig. 2). 

2.2. Lattice Gas Model  

We model the kinetics of the generalized Schl6gl reaction by a lattice 
gas automaton. This consists of a regular lattice 58 with n lattice vectors 
at each site; we denote the lattice vectors by e;, where i t  { 1 ..... n}. The 
state of the system at time t is then completely specified by the quantities 
ni(x, t) ~ { 0, 1 }, where i e { 1 ..... n } and x ~ .L* ~ We have ni(x, t) = l if there 
is a particle with velocity c~ at position x at time t, and n"(x, t ) = 0  
otherwise. 

The evolution of the lattice gas for one timestep takes place in two 
substeps. In the propagation substep, the particles simply move along their 
corresponding lattice vectors, 

n~(x + c~, t + At) *-- n;(x, t) 

This is followed by the collision substep, in which the newly arrived par- 
ticles change their state. The collisions are chosen to model the reactive and 
diffusive dynamics of species X. Their effect is captured in the collision 
operator co ~, which gives the increase in the number of particles moving 
along direction i due to collisions. In terms of this collision operator, the 
full equation of evolution of the lattice gas may be written 

n~(x + c~, t + 3t )  = ni(x, t) + co;(n*(x, t)) (2) 

where the dependence of oY on n*(x, t) indicates that each component of 
the collision operator can depend on all the components n ~ at the local site. 
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Fig. 1. The hexagonal lattice, with the checkerboard coloring and the enumeration of the 
three bits at each site. 

In this work, we restrict our attention to the Schl6gl model in two 
dimensions. We use a hexagonal (honeycomb) lattice because it has only 
three bits of state at each site (n=3) ,  thereby greatly simplifying the 
analysis; at the same time, it is sufficiently symmetric to ensure the 
isotropic form of the density balance equation, Eq. (1). This lattice is 
illustrated in Fig. 1. Note that such a lattice can be colored like a checker- 
board; note also that the correspondence between the bits and the lattice 
vectors is rotated by n/3 for the differently colored sites. 

2.3. The Coll ision Operator  

Following previous work on the modeling of chemical reactions by lat- 
tice gases, tH-14) we define two types of interparticle collisions. The chemical 
reactions take place in reactive collisions in which particle number does not 
need to be conserved. Between reactions, the particles execute diffusive 
collisions in which particle number is conserved. Both types of collision 
processes are stochastic; that is, the outgoing state of a collision depends on 
one or more random bits that must be generated at each site at each 
timestep, as well as on the incoming state. Reactive collisions occur once 
every k timesteps; the remainder of the collisions are diffusive. 

We need to define carefully the dynamics of the reactive and diffusive 
collisions, and thence the form of the respective collision operators, COR and 
coD. Because there are three bits per site, each site can be in one of eight 
states. We enumerate these states by specifying the three bit values, i.e., 
000, 001 ..... 111. The collision process can then be completely determined 
by specifying the outgoing state corresponding to each incoming state. 
Since the lattice gas is stochastic, this specification may depend on one or 
more random bits. 
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Let a(s ~ s') be 1 if a collision takes state s to state s', and 0 otherwise. 
Clearly, for each incoming state s, a(s--, s') can equal 1 for exactly one s', 
and must equal 0 for all others. In terms of this transition matrix, the 
collision operator can be written 

~ = ~ a(s- -+s ' ) (s ' i - s i )  ~-I 6,,j.~j (3) 
s, s '  j = I 

where ~,~= 1 - i - j + 2  O" is the Kronecker delta of the two bits i and j. 
Together, Eqs. (2) and (3) are a complete specification of the dynamics of 
the lattice gas in terms of the transition matrix a(s ~ s'), which will be 
defined through its ensemble average in the following section. Note that 
a(s--, s') may depend on random bits. 

2.4. The Boltzmann Equation 

We now suppose that we have prepared an ensemble of lattice-gas 
simulations, on grids of the same size, with initial conditions that are 
sampled from some distribution. We may take averages across this 
ensemble. Denoting Ng(x, t)-= (n;(x, t ) ) ,  the ensemble average of Eq. (2) is 

Ni(x + ci, t + At) = Ni(x, t) + ( coi(n*(x, t )))  

We are hampered from taking the ensemble average of the collision 
operator, Eq. (3), by the fact that it is generally a nonlinear function of the 
n~(x, t), and the average of the product is not equal to the product of the 
averages unless the qUantities involved are uncorrelated. The simplest 
approximation to make is the Boltzmann molecular chaos assumption that 
the particles entering a collision are uncorrelated; in this case, the ensemble 
average of co ~ yields the Boltzmann collision operator, 

/2i(U*) = ~. A(s--+ s ' ) ( s ' i - s  i) ~ (NJ)S'(l _ N J )  ' - .r  
s , ~  a j = l  

where A(s --+ s') - ( a(s --+ s') ) ~ [0, 1 ] is the ensemble-averaged transition 
matrix. The evolution equation in this approximation is the Boltzmann 
equation, 

N;(x + c;, t + At) = N;(x, t) +/2;(N*(x, t)) (4) 

Note that there are three one-particles states (001, 010, 100), three 
two-particle states (100, 101, 011), one zero-particle state (000), and one 
three-particle state (111 ). Let Isl denote the number of particles in state s, 
so, for example, I101l =2.  For the lattice gas considered here, the mean 
outcome of both diffusive and reactive collisions depends only on the total 
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,,l(s--, s') 

Is'l Isl = 0 Isl = 1 Isl = 2 Isl = 3 

0 po po/3 eO/3 po 
1 Po I Pit 13 P~/3 P~ 
2 P~ P~/3 P~/3 P~ 
3 e~ P?/3 P~/3 e] 

number of incoming particles, and is always uniformly distributed over the 
states of the outgoing particle number. Mathematically, this means that the 
A(s--* s') can depend only on Isl and Is'l, and can thus be tabulated as in 
Table I, where Pj is the probability that a collision will take a state with 
j particles into a state with i particles. 

For  the diffusive collisions, we must have 

i__  i P)-% 

where 6j is the Kronecker delta. Thus, a diffusive collision is nothing more 
than a random permutation of the three incoming bits. Calculation of the 
corresponding Boltzmann collision operator is straightfoward, yielding 

s = - 3 N ' +  ~.,' ~"+ ' + �89 '+2 (5) 

where the superscript of N is understood to be taken modulo 3. 
To simplify the algebra for the reaction step, we henceforth restrict our 

attention to the following specific values for the particle transition 
probabilities: 

!/" 1 - r  0 ' 

i 1 - - r  0 
P ) -  0 1 - - a  

0 1 - -a  a / j  

(6) 

for i, j e  {0, 1, 2, 3}, and we choose a = r = 2 / 3 .  Calculation of the corre- 
sponding Boltzmann collision operator yields 

a ~ R ( N * ) = ~ - - N ' +  7 ( N ~ 1 7 6 1 7 6  2 (7) 

A complete Boltzmann description of the system is given by Eq. (4), using 
Eq. (7) once every k timesteps and Eq. (5) otherwise. 

822/81/I-2-20 
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2.5. Boltzmann Equilibria 

Note that the Boltzmann equation, Eq. (4), admits homogeneous, 
isotropic equilibria, N O = N l = N 2 = f ,  where f obeys ~2(f) = 0. Note also 
that the diffusive collision operator, Eq. (5), satisfies ~QD(f)= 0 identically. 
We thus find homogeneous, isotropic equilibria by demanding that the 
reaction step do likewise, 

0 = f2~(f)  

= ~ _ f  + 7 f2_X~f3  

= ~(1 -- 2 f ) ( 7 f  2 -- 7 f +  1) (8) 

This has roots at f =  �89 and f =  �89 + ,r Figure 2 displays the evolution 
of the lattice gas model for the parameters given above, with the initial 
condition f = �89 everywhere. 

3. EXACT E Q U A T I O N S  OF M O T I O N  

The exact microscopic equations of motion for any lattice gas are 
easily described in terms of the multiparticle means N = (following the 
notation of our previous paper, ~6~ we denote by 0c an arbitrary subset of the 
bits (particles) in the system, and by N ~ the ensemble average of the 
product of those bits). In terms of these means, the exact time-development 
equation is 

N=( t + At) = ~K~N~'(  t) (9) 

where we use the convention of summing over any index which appears 
twice on one side of an equation and not at all on the other side. In this 
equation, d ~  is an advection operator, described by a permutation matrix 
on the set of bit sets ~, which carries each bit of the system forward along 
its associated velocity vector. The operator KrP describes the collision 
process. It can be factorized into contributions from each lattice site, 

I-[ (lo) ~"x 
x e L #  

where L# is the set of vertices associated with bits in fl and fix is the set of 
bits in p at the lattice site x. The mean vertex coefficients V~ are related 
to the state transition probabilities A(s--, s') through 

v",,= S Y. ') (11) 
s' ~ . t t  ,s ~ v 
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Fig. 2. Evolution of the SchhSgl model on a 512 x 512 grid, from an initial density of '0.5, 
yields domains of both low and high equilibrium densities, separated by sharp gradients 
whose width is govorned by the diffusive term in the rate equation. Beginning at the upper left, 
the frames show the evolution at times I, 3, 10, 30, 100, 300, 1000, 3000, 10000, 30000, 
100000, and 300000. 
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The exact time-development Eq. (9) can be rewritten in terms of con- 
nected correlation functions (CCFs) using the standard cluster expansion. 
The means are expressed in terms of the CCFs through 

N ~ = f f ( F * ) =  ~ rr162162 (12) 

where n(a) is the set of all partitions of a into disjoint subsets, r ,..., eq. For 
example, we have N ~ = F ~ N a~ = F an + F ~  b. This relation can be inverted 
to express the CCFs in terms of the means, F ' = g ' ( N * ) .  

We can now rewrite (9) as 

F~( t  + ~It) = ~ g # ( K r * f Y ( F * ) )  (13) 

This exact equation has been used as a starting point in previous 
worksC6. 7) It has been applied to SDB lattice gases, ~6) where the equilibria 
have no correlations and the expression on the right-hand side can be 
linearized in terms of the CCFs F"  with loci i>2. Equation (13) has also 
been applied to NSDB lattice gases by Bussemaker et  al., c7) who neglected 
CCFs F ~ with I~l t>3, and thereby derived the two-particle BBGKY 
equations for NSDB lattice gases. 

It has been shown c6) that the linearized form of (13) can naturally be 
expressed in terms of a sum over diagrams, each of which is weighted by 
a product of factors associated with each vertex at each timestep. There is 
a finite number of possible vertices, so that a complete formulation of the 
dynamics of a SDB lattice gas can be given in terms of a set of "Feynman 
rules" for allowed diagrams and vertex weights. 

An analogous diagrammatic description can be given for the exact 
nonlinear equations (13). The nonlinear diagrammatic expansion can be 
derived by proving a general factorization theorem for the time develop- 
ment of CCFs including particles at different vertices. The essential 
ingredient in proving this factorization is the observation that if a set of 
variables a depends stochastically on another set of variables r ,  so that the 
CCF F ~ is given by 

r~=x~ FI re, (14) 

where ~ = { ~l ..... ~,,} is a set o f (no t  necessarily disjoint) subsets of r ,  then 
the CCF of a joined with a set of variables ? which are not dependent on 
fl is given by 

r~'~=w~ H H r~'~' (15) 
r ~ rtm(y) i 
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where ( =  {(1 ,..-, (,,} is summed over all partitions of ), into precisely m 
distinct sets. This result essentially states that once we know an expression 
for the outgoing CCFs at a particular vertex of a lattice gas in terms of the 
incoming CCFs, we can calculate the CCF of a set of particles at multiple 
lattice sites by applying (15) at each vertex separately. The general expres- 
sion for an outgoing CCF at one vertex can be written by expanding 

OP( F* ) - gP( K~*, f f  ( F* ) ) 

as an explicit polynomial in the CCFs; i.e., 

OP(F*) = fff~ 1-[ Fr (16) 

where ~ = {~1 ..... ~k} is summed over all sets of CCFs with nonzero coef- 
ficients. Each time Eq. (15) is applied at a particular vertex, the correlated 
quantities at the other vertices are carried along and divided up in all 
possible ways among the incoming CCFs. A simple example of this result 
is that when a is an outgoing particle from a vertex with incoming particles 
bl, b2, b3 and c is an outgoing particle from a different vertex at the same 
timestep, we have (for a general lattice gas) 

r e = F ( { F ~ , } ,  {r~,~,:  iv~j},  F b'b'-b3) 

and 

F "  = ~  OF Fbic+ l  ~j  OF i.,bibjc OF 1..blb2b3c (17) 
i ~ 2 i  "OFaibJ -~ OFb'bzb~ 

The proof of (15) follows fairly easily by induction. The details of this proof 
and the general factorization theorem in the nonlinear case will be given in 
a separate publication. r ~6~ The result (17), which follows directly from (12), 
will be sufficient for our purposes in this paper. 

We conclude this section with a derivation of a simple form of the 
factorization theorem which we will need in the sequel Assume that at one 
vertex we have an outgoing particle A and incoming particles a, b, c, and 
that at another vertex we have an outgoing particle ,4 and incoming 
particles d, b, & We wish to find the dependence of the outgoing CCF F Az 
on the incoming, correlations, neglecting all CCFs between three or more 
particles. It will suffice for us to know the dependence of the outgoing one- 
particle means on the incoming one- and two-particle CCFs at each vertex. 
Thus, we can write 

F A = F ( F  ~, F b, F", F ~a, F ac, F ~') + (9(C3) 
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and 

f "  = r(I'% r ~, F% r ~, I'b% F %  + r 

where by (9(Ci) we denote quantities dependent on CCFs of i or more 
variables. Applying (17) once, we have 

FAX= OF F , , z  + OF F b  x OF FC x . 
o r  o -d-ff +g-r-; + r c,) 

Applying (17) again, we have 

OF Off 
F A~ . . . .  OF~, OF ~ F ~a + (-O(C3) (18) 

where 0~, ~ are summed over {a, b, c} and {eL/~, ?}, respectively, and where 
ff is shorthand for F evaluated at the barred variables. Note that this equa- 
tion has a diagrammatic interpretation because the coefficient associated 
with the propagation of a pair of correlated quantities at different vertices 
factorizes into contributions from each vertex separately. We will use this 
simple factorization result in the next section to compute the exact two- 
particle BBGKY equations for the equilibria of the Schl6gl model lattice 
gas. 

4. EQUILIBRIA OF SCHLOGL MODEL 

We will now consider the exact equations of motion for the Schl6gl 
model lattice gas defined in Section 2. By neglecting correlations between 
more than two-particles, we arrive at the two particle BBGKY equations, 
which we then solve using the diagrammatic method. The two-particle 
BBGKY equations were described for a general NSDB lattice gas by 
Bussemaker et al., ~7) who gave an iterative method for finding solutions to 
these equations. Although the equations we are solving here are essentially 
equivalent to those which would be found by applying the methods of these 
authors to the Schl6gl model lattice gas, our diagrammatic method of 
solution of these equations is rather different. Using the diagrammatic for- 
malism, there is no issue of convergence as there is with the iterative 
methods; furthermore, in our analysis, there is no question of uniqueness 
of solutions--we can identify directly all distinct solutions of the two- 
particle equations. In fact, we find that the two-particle BBGKY equations 
have spurious solutions for the lattice gas considered here. 

The first step in writing the exact equations for the Schl6gl model 
lattice gas is to write the exact equation for CCFs at a single vertex. There 
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Table II. Vertex Coeff icients for Diffusive Vertices 
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v~ 

I~1 IPl =0 IPl =1 IP[ =2 IPl =3 

0 1 0 0 0 

1 0 1 ~  0 0 
2 0 0 I/3 0 

3 0 0 0 1 

are two sets of such equations, corresponding to the diffusive and reactive 
vertices, respectively. The mean vertex coefficients V~ for both of these 
vertex types are symmetric with respect to permutations of incoming and 
outgoing bits separately, and therefore are only functions of the numbers 
of bits in a and ft. These vertex coefficients are easily calculated and are 
tabulated in Tables II and III. 

From these vertex coefficients, we can use (13) to write the exact equa- 
tions for the outgoing CCFs from a diffusive or reactive vertex in terms of 
the incoming CCFs. These equations are again invariant under arbitrary 
independent permutations of the incoming and outgoing bits. Labeling the 
outgoing particles by A, B, C and the incoming particles by a, b, c, we 
obtain the equations for a diffusive vertex as 

F n - -  ! ( F a  + F 'b + l "c) - - 3  

1 -'AB l ( F a b + F a e + F b c )  (19) = 3  

F ABC = F abe 

The one-particle equation for a reactive vertex is 

F A  = 1 7 a b a c + ~ ( F  F + F F + F b F  ~ - -  2 F ~ ' F b F  ~ + F "a - -  2 F ~ F  "b 

+ F "~ _ 2 F b F . ~  + F b~ _ 2 F . F b ~  _ 2F.O~) (20) 

Table III. Vertex Coeff icients for Reactive Vertices 

v; 

I~1 IPl = 0 IPl = 1 IPl = 2 IPl = 3 

0 1 0 0 0 

1 1/9 0 7/9 - 14/9 
2 0 0 7/9 - 14/9 

3 0 0 2/3 - 4 / 3  
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The equations for two- and three-particle outgoing CCFs are 
straightforward to calculate but are algebraically more complicated than 
Eq. (20). Note that setting the two- and three-particle correlations to zero 
in this equation, and setting all one-particle correlations to the mean 
occupation number f =  F ~ = F b = F c, reproduces the Boltzmann equi- 
librium, Eq. (8). 

Henceforth, we will restrict attention to uniform equilibria, so that the 
correlations are independent of spatial coordinate or orientation. We 
denote the equilibrium values of the one-, two-, and three-particle CCFs 
entering a reactive vertex by I1, 12, and 13, respectively. Similarly, we 
denote the CCFs leaving a reactive vertex by O~, 02, and 03. The exact 
equations of motion for the one- and two-particle CCFs leaving a reactive 
vertex are 

1 7I~ 14I~ 712 14Iii2 1413 
O~ = ~ q  3 9 - §  3 3 9 

- 1  49I~ 98I~ 49I~ 196I~ 
02=--~-q 27 81 9 - ~  2--if- 

196I~ 4912 981112 98I~I 2 
81 27 27 9 

784I~I 2 392141_, 4915 1961,1_'- q . - -  - + - -  
27 27 9 9 

2 "~ 196IiI_, 9813 196IiI 3 392I~I3 
9 81 27 81 

1961213 392III,_I3 19613 
- t - - -  

27 27 81 
(21) 

The equation for 03 can be similarly written, but is slightly more com- 
plicated and will not be used here. Recall that, as was demonstrated in the 
previous section, the exact dynamical equation of an arbitrary number of 
correlated quantities can be described in terms of the exact equations for 
the CCFs at a single vertex. Thus, Eq. (21), along with the corresponding 
equation for 03, gives a complete description of the equations of motion 
of all CCFs at a reactive timestep. 

To complete the equilibrium equations (1), we must determine the 
relations between the outgoing correlations O,. from a reactive vertex and 
the incoming correlations/~. Referring back to Eqs. (13) and (19), we see 
that at diffusive timesteps, the correlations essentially perform random 
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walks on the honeycomb lattice. Thus, the correlation 11 entering a fixed 
reactive vertex at some timestep is a weighted sum of outgoing correlations 
01 from vertices at the previous reactive timestep, with total weight 1. 
Since we have assumed an isotropic equilibrium, we have an equilibrium 
density f satisfying 

f = I i  = O, (22) 

It is interesting to note that by using this equality in the first equation in 
(21) we can write an exact expression for /3  in terms of 12 and 11. Inserting 
this expression into the second equation of (21), we find that the terms in 
12 cancel and we have the result 

02 = _ ~ + f _ f 2  (23) 

Note that this equation is exact, and must be satisfied by any isotropic 
equilibrium of the system. 

More generally, if we choose any values for a and r in Eq. (6), we may 
derive the exact equation, 

( - 1  + r - 2 a + 2 r a ) + 3 ( l + 2 c r ) I  l - 3 ( l + r + a )  11 
O z -  

3(1 + r + a )  

which reduces to Eq. (23) when r = a = 2/3. The existence of such a simple 
equation for O2 is a feature of the specific form chosen for Eq. (6); for 
example, if P0 ~ and P~ are not equal, the right-hand side of the above 
equation for 02 will involve I2. 

In principle, we would now like to find an exact set of expressions 
relating the quantities I2,/3 to outgoing quantities 02, 03 by iterating the 
exact equations of motion. However, this is technically infeasible since such 
a calculation would involve a sum over diagrams involving arbitrary 
numbers of correlated quantities. Thus, we shall now restrict ourselves to 
the two-particle BBGKY equations by neglecting correlations of more than 
two particles. By making this simplification, we derive a simple set of 
equations whose solutions give the equilibria of the lattice gas in the two- 
particle BBGKY approximation. 

Neglecting three-particle correlations, and setting f =  O1 = Ii ,  we find 
that the exact equations for the CCFs at a reactive vertex become 

1 7 f  2 14f 3 7I 2 14fI 2 
f = 9 +  3 9 { 3 3 

1 
= f + ~ ( 1 - 2 f ) ( 1 - 7 f + 7 f 2 + 2 1 1 2 )  (24) 
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- 1  49f  2 98f  3 49f  4 196f 5 196f 6 +4912 
0 2 = ~ i - q  27 81 9 ~ 2 ~  81 27 

98fi2 98f212 784f312 392f4Iz 
27 9 27 27 

49I~ 196fI~ 196fzI~ 
- + - -  ( 2 5 )  

9 9 9 

The first of these equations is satisfied whenever either 

o r  

I , =  - , ~ ( 1  - 7 f + 7 f  2) 
- _] (26) 

The solution f =  1/2 corresponds to the unstable equilibrium of the 
Boltzmann theory, and shows that this unstable equilibrium still exists in 
the two-particle BBGKY approximation. Inserting (26) into (25), we again 
derive the identity (23), so this identity still holds in the two-particle 
BBGKY approximation. 

To find all solutions to the two-particle BBGKY equilibrium equa- 
tions, it remains for us to find a relation between 12 and 02. This is the 
type of relation which was analyzed by Bussemaker et al/7J using an 
iterative method. Here, we describe this relation using an explicit sum over 
diagrams which allows an analytic study of the resulting equilibria. The 
analysis of the flow of two-particle correlations is slightly more subtle than 
that of the one-particle density. Tracing back a given incoming correlation 
12 to the previous reactive vertex (k timesteps earlier), we find that with 
some probability ~bk(1) the random walks of the correlated quantities lead 
back to a pair of outgoing particles from a single vertex associated with an 
outgoing correlation 02. However, the remaining random walks [with 
probability 1--~bk(1) ] lead to a pair of correlated quantities at different 
vertices. For a fixed pair of vertices, we denote such an outgoing correla- 
tion from a reactive step by O ,  ,. Using Eqs. (20) and (18), we can expand 
O ,  t in terms of incoming CCFs of the six particles associated with the two 
vertices in question. Making the two-particle BBGKY approximation, we 
have 

1,,) 127, 
pairs 
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where the sum is taken over all nine possible pairs of incoming particles, 
one from each vertex, which may be correlated, and where we can compute 
the "bounce probability" 2, as in Eq. (18), by taking the derivative of the 
right-hand side of Eq. (24), 

2=2(f, I2)= ~ ( f  --f2-I2)=~v(l +14f --14f 2) (28) 

Note that 2 ~< 1/3, with equality only when f =  1/2. We can repeat the 
above steps for the particles correlated in each term 11.~. Moving back 
through k - 1  diffusive vertices, associated with random walks of the 
correlated quantities, we again have some set of diagrams where the 
correlation originates in a pair of outgoing particles from a single previous 
reactive vertex, and some other set of diagrams where the correlated 
quantities are still separate. Repeating this analysis indefinitely, we find 
that the equilibrium correlations 12 and 02 can be related by 

where 

12 = oc(f) 02 (29) 

c t ( f )= ~, ~k(t)(32) 2'-2 (30) 
t = l  

is the operator associated with ring diagrams, and where ~k(t) is the 
weighted sum over all diagrams describing random walks of two particles 
for kt timesteps on the honeycomb lattice, where the particles leave a 
particular vertex on the first step in a fixed pair of directions and arrive 
together at some possibly different vertex at the final step. In these 
diagrams, the particles are not allowed to visit the same vertex at any 
timestep divisible by k (reactive vertices), and when they visit the same 
vertex at any other timestep (diffusive vertices), they exit in different 
directions with each possible pair of outgoing directions having equal 
probability [corresponding to (19)]. Note that the factor of 3 appears 
because the usual probability 1/3 of a given random bounce is replaced by 
the weight 2. 

As an example of a coefficient ~,(t), it is easy to calculate 

~2(1)=~ 

since the unique diagram which contributes is as shown in Fig. 3. Similarly, 
since at t = 2 there are 30 diagrams which each contribute (1/3) 6, one finds 
that 

~9(2)_ = 30(1) 6 = 24310 
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Fig. 3. 

I 

I 
,k 

'it '1" 
I I 
I I 

! 

Unique diagram contributing to ~2(I). 

It follows from the random walk interpretation of ~k(t) that 

~, ~k(t)= 1 
t = l  

since the probability that two random walkers in 2D will eventually collide 
is 1. An immediate consequence is that the series 

~. ~bk(t)(32) 2'-2 
t = l  

converges whenever 2 ~< 1/3. Furthermore, for ), satisfying this condition, 
we can calculate the above series to arbitrary accuracy; given any e, when 
2~<1/3 we can choose T such that ~,r= I ~ k ( t ) > l - - e ,  and it follows 
immediately that 

~ k ( t ) ( 3 2 )  2 ' - 2  < e  
t > T  

Thus, to calculate the sum to within an accuracy of e we need only calculate 
a finite number of coefficients ~bk(t), a task which is easily performed numeri- 
cally by a computer. 

We may now use (23), (26), and (29) to derive a single equation for 
the two-particle BBGKY equilibrium density f ,  

((f)=~(1--2f)[l--7f +7f2-7(1--9f-9f2)o~(f)]=O (31) 

As defined above, ( ( f )  is the rate of change o f f  as it appears on the right- 
hand side of Eq. (24). Since, as mentioned above, we can calculate ~( f )  to 
an arbitrary degree of accuracy, it is a straightforward process to determine 
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Fig. 4. Plot of ~(f) versus f for k = 3. 

numerically the values of f which satisfy Eq. (31) to an arbitrary degree of 
accuracy. We have performed such a numerical analysis for k ranging from 
2 to 7. For each value of k, we find not three, but rather five distinct equi- 
libria satisfying ( ( f ) =  0. As an example, we graph in Fig. 4 the function 
( ( f )  for k = 3 .  This function has two zeros at f~0 .1 9 0 3  and f~0 .8097 ,  
which correspond to stable equilibria of the system. We will refer to these 
zeros as "primary" solutions. In addition, however, the function has two 
unstable zeros near f =  1/2, which we will call "secondary" solutions. 
Furthermore, the root at f =  I/2 appears to be stable in this approxima- 
tion. Because the series for co(f) converges very slowly in the vicinity of 
f =  1/2, one might be suspicious of the secondary solutions. To see that 
such solutions must exist, however, we can observe that at f = 1/2 we have 
~c(1/2)= 1 and cc'(1/2)=0, and therefore ~ ' ( 1 / 2 ) = - 1 3 / 2 7 < 0  for any k. 

So there must be a secondary pair of solutions, just as we see in the 
graph. 

Comparison of the primary equilibrium solutions with numerical 
results from simulations of the lattice gas with various values of k shows 
that these solutions of the two-particle BBGKY equations predict the exact 
equilibria of the lattice-gas system remarkably well. This comparison is 
given in Fig. 5 for the larger of the stable equilibria. We see that the two- 
particle BBGKY aproximation gives an excellent numerical prediction of 
the equilibria ol; the Schl6gl model lattice gas. However, the existence of the 
spurious secondary equilibria demonstrates that one must be careful when 
dealing with truncations of the exact equations for a lattice gas. 

Though the secondary roots can be dismissed as unstable, the predic- 
tion that the root at f =  1/2 is stable remains a disturbing feature of the 
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Fig. 5. Equilibrium density versus k. The black points with the error bars are from numerical 
experiment, the gray points without error bars are from the two-particle BBGKY theory, and 
the line across the top is the Boltzmann value. Only the larger of the two stable equilibria is 
plotted, since there is clearly a symmetry for f - ~  1 - f  

two-particle BBGKY. approximation. We will now proceed to give a 
simple analytic argument which shows that the secondary solutions are 
highly sensitive to the introduction of three-particle CCFs, and thus that 
their existence is suspect on a priori grounds. First, let us observe that the 
introduction of a small amount of three-particle correlation in I3 would 
change (26), which would then read 

~1 213 
I2 = - (1 - 7 f +  7f2) +3( 1 - -2f )  

If the correlation 13 w e r e  small, this would cause a change in 12 which 
would be small except in the region f ~  1/2, where the change would be 
dramatic. A change in 12 would in turn cause a comparable change in 2 
through (28). Since the sum (30) converges slowly in the region of 2 ~ 1/3, 
the value of ct(f) is highly sensitive to a slight change in 2 in this region, 
which is precisely the region where f ~  1/2. In fact, only a small change in 
2 is needed to lower ct sufficiently that C(1/2) > 0, which would result in the 
disappearance of the spurious equilibria and the concomitant instability of 
the f =  1/2 root. 

The composition of the two extreme sensitivities described here makes 
it clear that the existence of the spurious equilibria is highly dependent 
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upon the vanishing of the three-particle CCF 13. In fact, we have extended 
our analysis to include a simple class of three-particle diagrams and found 
that with this minor modification, the spurious equilibria completely dis- 
appear. Specifically, one can take the exact three-particle equations at a 
vertex, and solve using the additional condition that 13 =ttlO3, where It is 
the weight of some simple class of diagrams involving three correlated 
particles. For the case k = 2, the simplest three-particle diagram is the one 
where three particles leave a vertex and bounce directly back on the sub- 
sequent advective step. This diagram gives ~t = 1/27. Exactly solving the 
resulting equations for the one-, two-, and three-particle CCFs, we find 
that there are precisely two stable solutions and an unstable solution at 
f =  1/2. Thus, it seems clear that the secondary equilibria generated by the 
two-particle BBGKY equations are spurious, since they can be removed by 
such a simple perturbation. Unfortunately, including an arbitrary set of 
three-particle diagrams, without performing the systematic three-particle 
BBGKY approximation, tends to reduce the effectiveness of the approxi- 
mation; thus, although the spurious equilibria are removed, the analysis 
described here does not give more accurate predictions for the actual 
equilibria than the two-particle BBGKY analysis. To have a significantly 
improved approximation to the actual equilibria of the lattice gas, one 
would need to use a more complicated approximation scheme such as the 
complete three-particle BBGKY approximation. 

We conclude this section with a brief discussion of finite-size effects. 
For any finite lattice, the complete equations of motion can have only a 
single equilibrium solution, corresponding to f =  1/2, since fluctuations can 
always drive a transition from one local equilibrium to another. Thus, if we 
have a lattice with I sites, the exact solution of the dynamical equations for 
all CCFs of 3l or fewer particles should only give a single solution. It is 
interesting to consider the effect that a finite lattice size would have on our 
discussion of the two-particle BBGKY equations. The only way in which 
a finite lattice size would modify the equations is to change the coefficients 
~bk(t) to correspond to random walks on the finite lattice. A particularly 
simple example of this is the degenerate case where we have a lattice with 
only a single vertex. In this case, the outgoing particles from a collision 
return immediately to the same vertex. Thus, we have Ck(1)= 1 for all k, 
and of course Ck(t)=0 for all t >  1. This modification of the coefficients 
has no effect on the exact equations at a vertex, Eqs. (24) and (25), so 
f =  1/2 is still a.solution of the equilibrium equations. However, using the 
modified values for ~b, we find that the two-particle BBGKY equation (31) 
becomes 

~(f)  = ~ ( 1 - 2f)(  --4 + 42 f - -  42 f  -~) = 0 
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This equation has three solutions, of which two are spurious equilibria 
analogous to those encountered previously on the infinite lattice. Thus, 
although the finite-size effects remove the extra physical equilibria, which we 
only expect to exist in the thermodynamic limit, these effects leave the 
spurious solutions of the BBGKY-truncated equilibrium equations intact. An 
interesting question, which we will address in future work, is at precisely what 
lattice size the thermodynamic equilibria first appear in the two-particle 
BBGKY approximation. An answer to this and related questions might shed 
light on the relationship between/-particle correlations and fluctuation scales. 

5. C O N C L U S I O N S  

We have described an NSDB lattice gas model for Schl6gl's second 
chemical reaction. We derived a self-consistent set of equations for its 
exact homogeneous equilibria, solved these equations in the two-particle 
BBGKY approximation, and compared the results to numerical experi- 
ment. We found that this approximation describes the equilibria far more 
accurately than the Boltzmann approximation, but we also noted that it 
can give rise to spurious solutions to the equilibrium equations which can 
only be removed by including effects due to three-particle correlations. 

The possibility of the existence of spurious solutions of the two- 
particle BBGKY equations was raised by Bussemaker et al/7~ The method 
they used to solve these equations was an iterative approximation method 
which was not well suited to recognizing the existence of multiple solutions. 
The use in this paper of a diagrammatic formalism to discribe the time 
development of the correlations made it possible to write the BBGKY- 
truncated equilibrium equations in a closed form which was amenable to 
numerical solution. It would be interesting to extend the diagrammatic 
analysis described here to higher order truncations of the BBGKY 
hierarchy. The diagrammatic method of analysis used here should also be 
directly applicable to the two-particle BBGKY approximations of other 
NSDB lattice gases; the set of diagrams to be summed over and their 
weights, however, will depend upon the specific lattice gas being studied. In 
general, rather than a single equation such as Eq. (31), one may end up 
with a system of coupled equations. 

The physically meaningful solutions of these BBGKY-truncated equi- 
librium equations provide an accurate description of the non-Gibbsian 
equilibrium of this lattice gas. The next step in this program of study will 
be to expand about this non-Gibbsian equilibria in Knudsen number, 
thereby generalizing the usual Chapman-Enskog analysis. In this way, the 
full reaction-diffusion equation, Eq. ( t)  will be derived, including the 
renormalized diffusion coefficient. This work is in progress/~6~ 
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